eNerget⊌cs

PV Production Forecast From Reduced Data Sets

FACULTO STATE FLECTRONIC ENGLAND

Bratislav Trojić, dr Aleksandar Janjić, Uroš Ilić, Vladislav Lazić Faculty of Electronic Engineering, University of Niš

Abstract

• This paper shows new and contemporary methods for forecasting solar power production for next hour on the basis of the reduced set of data, using machine learning.

Introduction

• One of the critical challenges in transition on renewable energy sources for energy economy is

Algorithm Evaluation

- Regression Accuracy Metrics (*MAE*, *MSE*, *Rsquared*).
- Cross-Validation technique was applied to make sure machine learning models have a low bias-variance factor.
 Results of test data.

variable nature of these resources.

- Even though that the solar energy is the most widespread available power resource, implementation is still difficult because of its sensitivity to weather conditions.
- In this work, is developed forecasting model for predicting the power output 1 h-ahead of time, based on the information about previous hour.

Data Analysis

- The data were collected from three solar power plants in Romania. The time period spans two years period (2017-2018).
- Data were divided into train and test data.
- The main objective is to assess performance of

• Comparison of algorithms: In addition, two more algorithms were developed for comparison, *Linear Regression* and *Support Vector Machine*.

Index 🗠	Linear Regression	Tree	SVM	Tunned Tree 🔻
Root Mean Squared Error	0.0853915	0.0742002	0.0852812	0.0621144
R squared	0.855647	0.891005	0.85602	0.92362
Mean Squared Error	0.00729171	0.00550567	0.00727288	0.0038582
Mean Apsolute Error	0.0503462	0.0320937	0.0722229	0.0267567

endogenous methodologies in the forecasting of the power output with no external weather influence on forecast model.

Training Prediction Model

- For model training, machine learning algorithm is used with decision tree regression.
- Data Preprocessing.
- Tuning Hyperparameters.
- Feature Importance.

Conclusion

- The developed machine learning models can be applied to predict one-hour-ahead PV power generation based on endogenous parameters like date time information and previous hour values of photovoltaic power output.
- Primarily, the purpose of the work is ability to quickly and easily predict an hour ahead for the needs of the market and market agents.
- Future studies will also focus on assessing the performance of machine learning methods in other time-scales and for different types of features.

