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This paper deals with the optimization of battery energy storage in a microgrid with renewable
energy sources and a connection to the utility grid with an option to buy or sell electrical energy.
Due to the intermittency of renewable sources, battery energy storage is an integral part of
microgrids, not just to provide energy continuously in times when renewables don’t deliver energy,
but also to lower the costs of purchasing energy from the utility. In the paper, a model for
optimization of battery storage scheduling is derived using the software package MATLAB. Since
model parameters such as wind speed, solar irradiance, load, and electricity prices are subject to
significant forecast errors, five different scenarios are created to assess possible changes in optimal
results.

Abstract

Introduction

In order to perform this analysis, mathematical models of microgrid elements had to be derived.
Solar and wind generation power output, 𝑃𝑝𝑣 and 𝑃𝑤, heavily depend on weather conditions,

specifically solar irradiance 𝐺 and wind speed 𝑣. These dependences are expressed in the following
equations.
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where 𝑃𝑠𝑡𝑐 is the output power of PV cells in standard test conditions (𝐺𝑡 = 𝐺𝑠𝑡𝑐 = 1000
𝑊

𝑚2, 𝑇𝑐 =

𝑇𝑟𝑒𝑓 = 25℃), 𝐺𝑡 is the light intensity incident on a PV panel. Coefficient 𝑘 is equal to −0.47
%

𝐾
,

while 𝑇𝑐 is the working temperature of solar panels and it depends on ambient temperature and 𝐺
is solar radiation inflicted on a horizontal panel. 𝑃𝑟𝑎𝑡𝑒𝑑 is wind turbine rated power, while 𝑣 is the
measured wind speed, 𝑣𝑟, 𝑣𝑐𝑖, and 𝑣𝑐𝑜 are rated speed, cut-in-speed and cut-off-speed of the
wind turbine, respectively.

Apart from the benefits gained using a battery as often as possible, its use also brings additional
costs. Every time the battery is used, it loses a fraction of its remaining useful life, so the costs of a
battery depreciation should also form part of the optimization target function. One of the crucial
parameters for battery modeling is a state of charge (SOC). It shows the battery's remaining
capacity. Next equation shows how SOC is updated after each charging/discharging cycle.

𝑆𝑂𝐶 𝑖 + 1 = 𝑆𝑂𝐶 𝑖 −
𝑃𝑏𝑎𝑡(𝑖)

𝐶𝑏𝑎𝑡
∆𝑡

where 𝑃𝑏𝑎𝑡(𝑖) is the battery power during 𝑖-th hour of the day and lasts for a period ∆𝑡 = 1 ℎ and
𝐶𝑏𝑎𝑡 is the battery capacity. Equivalent cost of charging/discharging cycle is calculated using
following equation:

𝑐𝑠𝑡𝑜𝑟𝑎𝑔𝑒 =
𝑐𝑖𝑛𝑖𝑡

𝑎1𝑒
𝑎2𝐷𝑛 + 𝑎3𝑒

𝑎4𝐷𝑛

where the denominator represents equivalent cycle number when the depth of the discharge is
𝐷𝑛. The correlation coefficient factors 𝑎1, 𝑎2, 𝑎3, and 𝑎4 are equal to −16.27, 2.679, 4110 and
−1.85, respectively

Model of the microgrid

Many of the most challenging problems humanity is facing in 21st century are related to energy
generation and its use. Renewable energy generations and some new concepts such as microgrids
provide part of the solution to these problems. One of the major issues concerning renewable
energy is the intermittency and the unpredictability of its sources. For this reason, an optimal
battery energy storage scheduling needs to be derived to get the most out of the microgrid, taking
into consideration forecasted parameters. However, quantities such as solar irradiance, wind speed,
load, and electricity price are susceptible to errors in forecasting. In order to asses these
uncertainties, in this paper five different scenarios were generated. An optimal battery schedule
was found for each of the scenarios, and these schedules were then used crosswise in other
scenarios. After that, it was analyzed how results change when all scenarios are taken into account
for optimization. Also, it was assessed what the effects of using the probability of scenario
occurrence are.

Table 1. Optimal output across different scenarios.
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Problem formulation

Fig 1. presents the diagram of the microgrid used in this paper. Rated powers of PV and wind power
generation were 100 kW and 150 kW, respectively, while battery capacity was 100 kWh. The goal is
to forecast weather, load, and prices condition, which would subsequently be used for battery
schedule optimization in order to get the lowest operating costs of a microgrid. The energy is
bought on the day-ahead market based on forecasted parameters, but if, due to errors in
forecasting, the power balance condition isn’t satisfied, the energy difference would be bought or
sold on the intraday market, where prices are bigger and more volatile.
As an input to the model, forecasted 24-hour vectors of solar irradiance, wind speed, load, and
electricity prices were inserted. However, as was mentioned before, all four parameters are highly
susceptible to errors in forecasting, which are almost impossible to avoid. To assess the effects of
uncertainty in input parameters on battery schedule optimization, five different scenarios were
generated (Fig. 2). Weather forecast changes in several consecutive days for a fixed location were
used as a basis for different scenarios. After that, scenarios have been moderately altered to insert
occasional spikes and drops that would be a consequence of unexpected weather changes. The
biggest changes were made to the intraday market prices profile compared to the day-ahead prices
profile, which was fixed in this problem.

Figure 1. Microgrid diagram. Figure 2. Forecast scenarios.

Objective function
The goal of the optimization algorithm in this paper was to minimize the operating costs of the
microgrid for the day ahead.

a) b) c)
Three objective functions were evaluated in this paper, considering number of constraints. Function

a) takes into account only one scenario and it was evaluated for each scenario individually. 𝑓𝑘 is the
objective function value of scenario 𝑘, 𝜋𝑑,𝑎 is the 24 h vector of day-ahead energy prices which is

the same for all scenarios, 𝜋𝑖,𝑑
𝑘 is the 24 h vector of intraday prices for scenario 𝑘, the difference

𝑃𝑔𝑟𝑖𝑑
𝑘 − 𝑃𝑔𝑟𝑖𝑑

𝑏𝑠 is the amount of energy needed to buy on the intraday market for each scenario,

while 𝑐𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑘 is the price of the storage for the optimal solution in the scenario 𝑘. Function b) takes

into account all scenarios equally. By this mean, the risk of the occurrence of each of the scenarios
other than baseline scenario would be mitigated. In function c) the coefficient 𝜌 which represents
the probability of the baseline scenario occurrence was introduced to assess the importance of the
forecast quality. All other scenarios have the same probability of happening.

Simulation results
The optimal battery schedule for one scenario doesn’t provide the best solution for other
scenarios. This is where it can be seen how important the accuracy of the forecast is. Even though
big errors are possible, solar energy, wind energy, and load have profiles that are usually stable. The
electricity price profile has the biggest impact on the difference in optimal results across scenarios.
To analyze the difference between the results in different scenarios, the optimization was

performed for all scenarios individually. Then the optimal battery schedule 𝑥𝑜𝑝𝑡
𝑘 of one scenario 𝑆𝑘

is then applied to the costs function of other scenarios. The results showed differences in costs
function output depending on which scenario’s optimal battery schedule was used. After that, the

optimization function considering all scenarios was evaluated and the resulting schedule 𝑥𝑜𝑝𝑡
1−5 was

obtained. The results are presented in Table 1.
Fig. 3 depicts how the optimal battery energy storage scheduling output gives the smaller operating
costs when the probability of baseline scenario occurrence is higher, which is expected as in this
case all scenarios were worse than the baseline scenario in terms of needed operating costs. Fig. 3
actually represents how much we have to give up on baseline optimal solution in order to lower the
risk of bigger costs.
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𝑥𝑜𝑝𝑡
1

1100.28 1701.94 1596.16 2051.31 1744.38

𝑥𝑜𝑝𝑡
2

1143.98 1670.62 1574.48 2049.37 1707.66

𝑥𝑜𝑝𝑡
3

1145.76 1680.02 1559.62 2044.15 1689.69

𝑥𝑜𝑝𝑡
4

1118.51 1683.99 1572.25 2030.90 1712.52

𝑥𝑜𝑝𝑡
5

1177.70 1714.56 1590.32 2103.00 1667.10

𝑥𝑜𝑝𝑡
1−5

1125.77 1677.00 1565.77 2035.94 1690.03

Figure 3. Costs dependence of the probability of the baseline 

scenario occurrence.

Conclusion
This paper assesses the battery energy storage schedule optimal results in a microgrid across
different forecast scenarios. It shows how differences in input parameters, such as solar, wind, load,
and electricity prices, which are susceptible to forecasting errors, may invoke changes in the
optimal schedule and higher costs than expected. To minimize the risk of the worst-case scenario
occurrence, more scenarios have to be taken into account when finding the optimal scheduling
output. This can either be done by just adding all scenarios and finding the optimal solution across
all of them, or use the probability of the scenario occurrence if it is available.
For future work, a more comprehensive model that encompasses more of the significant factors
and gives a closer representation of the grid can be built. Also, more elements of modern
microgrids can be included, especially electric vehicles that are becoming more and more
important.


