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Introduction

The relevant standards [1-3] do not take into account the thermal effect of
the Sun on the ampacity of underground power cables.

The number of research papers dealing with this effect is small.
All of these papers were written by Klimenta et al. [4-6].

There are also researchers who found that solar radiation only affects the
cables laid at law depths [7], and researchers who concluded that the effect
of the Sun can not be ignored in the case of cables under dynamic loading
[8-10].

In this paper, the quantification of the thermal effect of the Sun on the
cable ampacity was performed for different laying depths of the cable (0.4,
0.7 and 1 m), different surfaces of the pavement above the cable (cool
white coating, acrylic white paint, uncoated concrete blocks, uncoated
asphalt and acrylic black paint), different dimensions of the cable bedding
(case I — the bedding of standard size, and case II — the trench completely
filled with bedding material), various load currents, various solar
irradiances and different operation conditions (the most unfavourable
summer conditions and the most common winter conditions).

The considered XP-00 4x16 mm? (0.6/1 kV cable has cross-linked
polyethylene (XLPE) insulation and corresponds to the N2XY type.

Simulation results were obtained using the finite-element method (FEM)
in COMSOL and were compared with the corresponding experimental
data from [4-6].

Experimental Background

The apparatus, procedure, materials and measurement results that were
used as an experimental background for this study are described in detail
in [4-6]. In [4-6], the following experiments were conducted: (i) with
pavement made of concrete blocks, (ii) with concrete-pavement coated
with acrylic white paint, and (iii) with concrete-pavement coated with
acrylic black paint.

For the purposes of comparing the simulation results with the
experimental data from [4-6], the following three points are singled out: A
— on the outer surface of the physical model of the cable, B —on the lower
surface of the pavement above the physical model of the cable, and C — on
the upper surface of the pavement above the physical model of the cable.

The temperature at point A was obtained by averaging the measured
values at three different points along the physical model of the cable, while
the temperatures at points B and C were measured directly.

Points A, B, and C are marked within the small-size computational
domain, which is used for FEM-based simulations in COMSOL.
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2D FEM-Based Model

A two-dimensional (2D) FEM-based heat conduction model is created
based on the following equation [4]:
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where k is the thermal conductivity in W/(m-K); T is the temperature in
K; x,y are Cartesian spatial coordinates in m; and Q, is the volume power
of heat sources in W/m?.

The volume power of heat sources in the phase conductors is
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where R (T,)) is the a.c. resistance per unit length of a single copper

)

conductor at temperature 7,,=90 °C, T, is the continuously permissible
temperature of the XLPE-cable in °C, I is the cable load current in A, and
S’_ is the geometric cross-section area in m?.
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Figure 2. Presentation of the small-size
computational domain corresponding
to the experimental apparatus.
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Figure 2. Presentation of the large-

size computational domain.

TABLEL DETAILS ON FINITE ELEMENT MESHES
AND MESH INDEPENDENCE TESTS
Finite element mesh T
- emp.
Automatically After differences
Domain generated refinement
No. of | No.of | No.of | No. of oC:
nodes | elements | nodes | elements
Small 15146 | 29101 50392 | 116404 =0.002
Large. with \_-c | 3450 | 7010 | 13836 | <0.03
di=04m
Large. with -39 | 3300 | 6376 | 13596 | <0.01
dr=0Tm
Large. with 1oc0 | 3438 | 6953 | 13752 | <0.02
ﬂrL=1 m
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Figure 3. Temperature distribution over (a) the part of the
computational domain from Fig. 2 that represents the cable trench,

obtained for the case II when the upper surface of the trench is covered

with (b) cool white coating, (¢) acrylic white paint, (d) uncoated
concrete blocks, (e) uncoated asphalt, and (f) acrylic black paint.
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Figure 4. Temperature of the S-phase conductor versus

load current for different laying depths and pavement

surfaces: (a) bedding having dimensions 0.5 m x 0.4 m,
and (b) trench completely filled with bedding material.

TABLEIL SIMULATION RESULTS OBTAINED FOR THE LABORATORY CONDITIONS
. Pavement surface Temperature o, I
80 F Absorptivity, | Emissivity, Cable’s outer Pavement
Phase - -
| Color [+4 £ conductors surface Lower surface | Upper surface
75 Sim = | Diff = | Sim * | Diff * | Sim * | Diff * | W/m3 A
0l ~ _ °C oc | °C [ °Cc [ °C [ °C | °C
White 0.26 0.9 56.2 50 -14 | 2512 | -028 | 2420 -0.11 | 242410 | 5446
=l d=04m Grey 0.56 0.94 56.21 50 -13 | 2511 | +0.31 | 2427 | +0.57 | 242540 | 5447
50 = = =d=07m|| Black 0.97 091 56.2 50 17 [ 2512 ] -138 | 2428 | -142 | 242440 | 5446
L """'jiéi‘m White 0.26 09 6235 55 -13 | 2552 | -038 | 2452 | -0.78 | 287310 | 5929
55 2. -- -di:[]?mf Grey 0.56 0.94 62.36 55 -07 | 2549 | +139 | 245 | +1.0 | 287450 [ 593
e dp=lm Black 097 091 62.35 55 -14 | 2551 | -139 | 2452 | -1.48 | 287360 | 59.29
0p - Black pavement - _j;g;‘ﬁ' White 0.26 0.9 68.5 60 -11 | 2591 | +1.01 | 2476 | +1.26 | 332200 | 63.75
4l surfac e dp=lm || Grey 0.56 0.94 68.51 60 -06 | 2588 | +168 | 2473 | +1.23 | 332390 | 63.77
(a) Black 0.97 091 68.5 60 -10 | 259 | -09 | 2475 -1.15 | 332250 | 63.76
40U H‘JU -~ 3(‘)0 4(‘)0 - 660 _N'JU - 9(‘)0 — White 0.26 09 74.65 63 -09 | 263 | -06 | 250 | -1.2 | 377100 | 67.92
Solar Irradiance [W/m?] Grey 0.56 0.94 74.66 65 -02 | 2627 | +147 | 2497 | +1.17 | 377310 | 67.94
Black 097 091 74.65 63 -08 | 2629 | -1.01 | 2499 | -1.31 | 377150 | 67.93
50 White 0.26 0.9 80.79 70 -09 | 2669 | -021 | 2524 | -066 | 421960 [ T1.85
Grey 0.56 0.94 80.8 70 -03 | 2666 | +206 | 252 | +1.6 | 422200 | T1.87
Grey pavement g Black 0.97 091 80.8 70 -07 | 2669 | -041 | 2523 | -0.67 | 422070 | 7186
B0 Whits paviment surface w___,..p.,.m- “9”_‘),-55 ¥ Sim” denotes the simulated value, while “Dhff” denotes the difference between the simulated and experimental values.
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or - ,-"‘ it - TABLEIIL EFFECT OF PAVEMENT SURFACE RADIATION PROPERTIES ON TEMPERATURES OF PAVEMENT, CABLE’S
e w.’__,,a"" T OUTER SURFACE AND S-PHASE CONDUCTOR FOR THE CASES T AND IT RELATING TO THE LARGE-SIZE DOMAININ FIG. 2
60f __s‘w"’"pm ,"‘ - =04 m Surface radiation Casel CaseIl
pES = == =d=0Tm | . . roperty Temperature Temperature
| ’, - :jié ftlm | Material, c eafing or Absorpil;'.vit],l':: Emissivity,| Pavement Ca.b];’s outer| S-phase | Pavement Cablle:?s outer| S-phase
20 L o a‘é=0 T paint o £ surface surface | conductor| surface surface | conductor
” Black pavement e dp=lm - - °C °C °C °C °C °C
a0 surfac Tl Cool white coating 0.15 0.9 20.3 52.5 64.1 21 50.8 623
B Acrylic white paint 0.26 0.9 27.7 56.3 67.9 28.1 54.9 66.4
(b) Concrete blocks 0.56 0.94 45 65.5 77 452 64.7 76.1
30 ' : ' ' : ' ' : ' Asphalt 0.87 0.93 63.3 753 86.6 63.2 75.1 86.4
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Figure 5. Temperature of the TABLEIV. VOLUME POWERS OF HEAT SOURCES AND CABLE AMPACITIES CAICULATED FOR THE LAVING DEPTHOF 0.7
S-phase conductor versus METERS AND DIFFERENT THEEMAL ENVIRONMENTS IN SUMMER AND WINTER
SOlz}r irradiance for different Surface Results obtained for the most Results obtained for the most
laying depths and pavement . . . radiation| unfavourable summer conditions common winter conditions
surfaces: (a) bedding having llaten::; lc: ;tanng or property Case I Case IT Case I Case IT
dimensions 0.5 m x 0.4 m, . 0, I, Q. I, Q, I, Q, I,
and (b) trench completely - W/m A W/ m A W/m A W/m A
filled with bedding material.. Cool white coating 0.167 596590 | 854 682240 014 | 1018540 (1116 1122160 | 117.2
Acrylic white paint 0289 572850 | 837 646280 889 | 1005330 | 1109 | 1102250 | 1161
Concrete blocks 0.596 515480 | 794 559140 827 973160 [109.1 | 1053800 | 1135
Asphalt 0.935 454920 | 746 | 466640 75.6 937180 [107.1 | 999100 110.6
Acrvlic black paint 1.066 433540 | 728 | 433950 72.9 024500 | 106.4| 980110 109.5
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Conclusions

The simulated and experimental results are in good agreement.

Compared to the corresponding cases with the black pavement, the
ampacity of the considered cable laid at 0.7 m can be raised up to 25.6
% in summer and up to 10.2 % in winter.

The ampacity of the considered cable was found to increase with
decreasing the absorptivity-to-emissivity ratio of the pavement surface,
as well as with decreasing the laying depth of the cable (excluding the
case of black pavement surface for the range up to about 81 °C).

All the ampacity values obtained for the laying depth of (0.7 m and the
most unfavourable summer conditions are lower than the reference
value of 111 A [11]. In addition, for the most common winter conditions,
the ampacity values are lower or greater, by 4.6-6.2 amperes, than the
reference value of 111 A.

From the point of view of the solar irradiance, the ampacity of the
considered cable increases with decreasing the laying depth in the case
of grey or black pavement surface, and stays almost constant with
decreasing the laying depth in the case of white pavement surface.

The results obtained for the XLPE-cable changes according to a law
similar to that observed in [4] for a PVC-cable.
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